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Abstract— Manipulator compliance is well known to be im-  joint velocities that attempt to achieve a second-priasthjec-
portant to robot manipulation and assembly. Recently, thishas tive (such as avoiding obstacles or manipulator singigs)it
been highlighted by the development of new higly-compliant while achieving a desired end-effector velocity [4], [58].[

robot manipulators such as the Barrett arm or the DLR Chi - id d d-| t . f th
lightweight manipulator [1], [2]. It is also clear that dexterous laverini considers a damped-ieast-squares version @

manipulation involves touching the environment at differet control law that is robust to algorithmic singularities .[9]
locations simultaneously (perhaps at different points onhe robot ~ Antonelli provides a Lyapunov analysis demonstrating that
hand or fingers). In these situations, it is particularly attractive  pasic approach is stable [10]. Related approaches have been

to control the system using a multi-priority strategy where aoplied in more aeneral contexts [111. [12
several contact points are commanded in parallel. Multi-pfority pp 9 [11]. [12]

Cartesian impedance control is the natural combination of hese A significant body of work explores the general problem
two ideas. The system realizes several impedances with eifent Of impedance control in the context of redundant manipu-
reference positions at different points on the robot with a pecified lators. Building on Hogan's early work [13], Natakt. al.

order of priority. We find a controller that minimizes an arbi trary propose a version of the impedance controller that cogrect

quadratic norm on the second-priority impedance error subject : _ L
to constraints deriving from the first priority impedance task. handles angular impedances [14]. Albu-Schaffer and Hyeain

We also show that the locally optimal controller does not regire  PfOPOS€ & dyal-priority impedance archit?cu_”e where the
force feedback in its implementation for passive desired iertias. end-effector impedance and null space joint impedance are

The results are illustrated in simulation. controlled separately using a stiffness formulation [16Gjt
et. al. demonstrate stability even though the redundant space
I. INTRODUCTION! is non-integrable [16].

. . i In contrast to the above, the current paper considers the

Since the earliest days of robotics, researchers have begsiion of simultaneously controlling the impedance ak-mu
aware of the possibility of controlling second-priorityjet- (e end-effectors. Rather than stabilizing an arbitraayam-
tives using degrees of freedom (DOFs) that are redund@gtrization of the redundant space, this paper optimizes fo
with respect to a first-priority task [3], [4], [5]. However, 5 integrable operational space objective. To our knoveedg
the advent of high-DOF humanoid robots make it possible {9 st closely related work on the subject is the multi-
consider executing more than two tasks simultaneously [griority framework of Sentis and Khatib [6], [17]. In their
[7]. Thi§ approach to robot coqtrol is particularly relet/ar\Nork, the multi-priority objectives are realized by prdjeg
to manipulation tasks where high-DOF hand-arm systemgyer_priority objectives into the dynamically consistenull
must be controlled so as to interact with gn_er_mro_nme%ace_ Although this formulation keeps the first prioritgkta
at a few desired contact regions. However, it is ironic th dependent of the lower-priority tasks, it does not optierfor
although end-effector compliance is important to robust M&econd-priority performance. The current paper expldnes t

nipulation, relatively little research exists that stedmulti- it We provide a control law that minimizes quadratioerr
priority impedance control. This paper addresses thisitlefic i, respect to the desired lower-priority impedance while

proposing a locally-optimal dual-priority impedance 1&8#st, sl ensuring independence of the first-priority objeetit
we propose a general law that uses force feedback to realiggs out that for the optimal dual-priority controller, i
an arbitrary dual-priority impedance. Then, we charaeéeriyqgsiple to identify the operational space directions wlhike
the subset of impedances that can be realized using tor%‘é%ond-priority task is independent of the first-prioriagk.

cqntrolled manipula.tors without force Sensors. In conttas These independent directions can be adjusted by changing th
prior work, we consider the space of all possible controlsla\/\(,veightmg matrix used by the optimization criterion.
that realize the first-priority impedance and select the tbaé

is optimal with respect to an arbitrary quadratic optimi@at
criterion. Il. BACKGROUND
The mul_t|-pr|or|ty approach to robot manipulator contrakh _ Generalized equation of motion
been studied extensively. Many early approaches calcllate
The dynamic motion of a robot arm with revolute joints
Portions of this publication have patents pending. is typically understood in terms of the following generatiz



equation of motion: as completely as possible given the mechanics of the manip-
. ulator, where

Mg+n=r+m, fi = Bidy + K124, (3)
where M is the n x n manipulator inertia matrixg is an

n-vector of manipulator joint accelerations,is ann-vector

of joint torques resulting from externally applied loads,

is a vector of actuator torques, amddescribes the sum o
frictional, coriolis, centrifugal, and gravitational tpres [18]. ! e
The dependence of these terms on manipulator configuratiofliPedance objective,

implicitly a}ssumed._ln prderto simplify notation, we inthace Qoiin + f5 = fo, (4)
the following substitution:

Q, is the desired inertial3; is the desired dampindys is the

desired stiffness, and; is the pose error in the first-priority
£ POR. In addition, dual-priority Cartesian impedance ocaintr

must also minimize error with respect to the second-psiorit

to the greatest extent possible while not impacting perfor-
mance with regard to the first-priority objective, where
such that the equation of motion can be expressed in terms of “ . -

g P fs = Baia + Kalo, (%)

a command vectory:

Qs is the desired inertial3, is the desired dampindys is the

desired stiffness, andl, is the pose error at the second-priority
B. Operational space POR.

It is frequently useful to design controllers defined iré L i

operational space coordinates rather than in joint spateleW — Optimization criterion
the term “operational space” may refer to any coordinate The possibility of realizing two Cartesian space impedance
system relevant to a robot task, it usually refers to theespéc depends on the degree of mobility between the two PORs. In
positions and orientations of the end-effector represthgea general, it is not possible to realize both Cartesian impeéls.
parameterization a§ F(3). In this paperSFE(3) is parameter- concurrently because the two PORs are not necessarily suf-
ized using exponential coordinates whereby a Cartesiamigosficiently mobile with respect to each other. Therefore, the
encoded by a 6-vector with the first three numbers describiftjltiple-priority approach applies actuator torques sthait
position and the last three numbers describing orientatighe primary impedance objective is achieved while miningzi
using the axis-angle representation [19]. The Cartesian & optimization criterion associated with the second+fiyio
locity of the end-effector will be represented as a twist arithpedance objective. We restrict our attention to the case
the acceleration as the derivative of twist. Similarly,dedn where the optimization criterion is the weighted squared
Cartesian space will be written as wrenches (six-vector th@agnitude of the Cartesian acceleration at the secondigrio
concatenates a force and a moment) [19]. The end-effect§PR:
Jacobian,J, relates joint velocitiesg, to Cartesian twists at
the end-effectorg: @ = Jgq.

Ta:u+nv

Mi=u+T. (1)

¢ = (@2 =) Wi — i)

2Tz, (6)
I1l. DUAL PRIORITY CARTESIAN SPACE IMPEDANCE
CONTROL where #}, is the desired Cartesian space acceleration at the

Dual priority Cartesian impedance control is defined Witﬁecond—priority POR and:

respect to two points of reference (PORs). A POR is a 2= W2 (& —i). (7)
reference frame attached to the manipulator that is the ob-

ject of Cartesian control. In general, dual priority Caiges The goal of dual-priority Cartesian impedance control is
impedance control realizes two different impedance laws d@ minimize Equation 6 while realizing the first-priority
fined with respect to two different PORs simultaneously. Ori@pedance in Equation 2.

impedance obijective is first-priority while the other is ced-
priority. Dual-priority Cartesian impedance control nmmzes
error with respect to the first-priority impedance objeetiv T he first-priority Cartesian impedance constrains the spac

while also realizing the second-priority objective to theag- ©Of joint accelerations that must be considered. Subsiguti
est extent possible. JiG+ Jiq for &, in Equation 2 and taking the pseudo-inverse,

we have:

C. Control Law

A. Problem statement . ) )
Let =1, &1, &1, and f; be the pose, twist, acceleration, qg=4Jy {Ql (f1 = /1) - Jq} + N, (8)
and externally applied wrench associated with the firsfiyi where N, = I - JJy and X is arbitrary. Usings — Jad +

POR. Defi Lo, & imilarly for th - . . .
r%rit ;O';ex_ﬁhexz ’Ozf ’Ofa SS ;:2 ;I(;Tr]iltari% gcrja:ngesfocr?trrlgl /24, the space of Cartesian accelerations at the secondtpriori
P Y : 9 P y Imp POR consistent with the first-priority impedance is:

to realize the first-priority impedance objective,
i+ ff = fi, @  d2=JJ) [ﬂfl(fl - ) - J'q'] +J2g+ JaNix (9)



Among those joint accelerations permitted by the condiraiAs a result, Equation 13 becomes:
we must find one that minimizes the optimization criterion. . SR . .
This can be achieved by solving Equation 9 for the valua of G = NaJj [Ql (=1 - qu}
that minimizese (Equation 6), or equivalently, (Equation 7). 4 |:Q—1(f ) - }
Solving Equation 4 for the desired acceleration at the sgcon 22 M2 2 24

POR, we have: +N; No Ny . (15)
xézggl(h_f;) where
Substituting Equation 9 into Equation 7 fés and using, No=(I=J2R2). (16)
above, we have: Substituting into the equation of motion (Equation 1) fr
. ) we have:
z = W5(1,2 — I )
y u = M—T

= W2 |LJF (7 — ) = i) + Jod ) - o
—{1 (* ) = ]\4]\[2*]1Jr [Q1l(f1—f1)_J1Q}
—Q3 M (fa— f3) + JaNi ] (10) oo -
o | +MJs [Q; (f2 —f;)—JQq}
The value of) that minimizesz”z can be found using the N
pseudo-inverse: TMNiN2 NS — 7. (17)
S T . . In order to realize Equation 17 in practice, it is necessary
A= {Qz (fo—f3) - ng} to measure the externally applied loads. This might be ac-
_ 7 +lo=17s _ oy _ 7 4 complished by measuring the load$, and f>, applied at the
Sal2 ) [Ql (fi=17) qu} first- and second-priority PORs and assuming that no externa

+(I - jQJQNl)ﬁ, (11) loads are applied elsewhere on the manipulator. Accorgingl
we have:
where T=JLfi + I f.
S 1 1

Jo = (W2 JoN1)TW>. (12)  substituting into Equation 17, we have:

The term (I — nggNl)ﬁ (for arbitrary 3) represents the u = Mg—rT
dditional freed left in th that th d- ¢ - x ;o

additional freedoms left over in the case that the secon = MNyJ; [91 Y — ) — qu}
priority optimization criterion does not completely detene
the motion of all joints. The matrixXI — J3JoNp) is an +M Js {Q;l(h — - j2q'}
orthogonal projection matrix that spans the joint accdiena . - r
irrelevant to either objective. +MN1NoN1 3 — Jy fr = J; fo. (18)

~ The joint accelerations that realize the first-priorityrhe control law in Equation 18 solves the problem proposed in
impedance (Equation 2) while also minimizing the optimizagection I11-A while minimizing the Cartesian acceleratioh
tion criterion with respect to the second-priority impedan the second-priority POR and assuming that externally agpli
(Equation 4) can be found by substitutingback into Equa- \yrenches at each POR can be measured directly.
tion 8:
. D. Analysis
i = J [Qfl(fl - I1) —Jﬂi} The closed-loop behavior of the dual-priority Cartesian
T P X . impedance controller (Equation 18) can be understood imger
N2 {QQ (Fo = f2) = qu} of the Cartesian accelerations at the first- and secondifyrio

—NyJoJyJf [Q;l(fl — ) - Jﬁq’} PORs. First, note that:
IS 7 1 1
+N1(I — J2JoNy)B. (13) JiJy = Jl(W2J2]\Cl)+VE/2 1 1
= JiNJ3W2(W2JoN J3W2) T w2
0.

This equation can be simplified by using the fact that for an _
matrix, 4, the following is true:A* = AT (AAT)*+. Therefore, 1herefore, we have that:

we have that: TNy = Ji(I = Jodo)
NiJy = Nl(W%J2N1)+W% = Ji. (19)
= NN JTW =) (W32 JoNy JTW )T W2 Using the above results and substituting Equation 15inte-
_ (N1J2TW%)(W%J2N1J2TW%)+W% J1G + J1q, the Cartesian acceleration at the first POR is:

— ], (14) i = Q7 (- ),



thereby realizing the desired first-priority impedance. Substituting back into the equation of motion (Equationrid a
The Cartesian acceleration of the second-priority POR caalving for #;, we arrive at Equation 2, demonstrating that

be calculated using, = Joi + Jag: the second-priority objective does not influence the dycami
) ST . . . of the first-priority objective. However, substituting anthe
By = Jodo [92 (f2—1f3)— Jz(]} + Jag equation of motion and solving fai,, we get:
(1 = Todo) o |7 (f1 = 1) = ad] B = LMTITMOT (A - )
+J2N1N2N1ﬁ. +J2M71J§1A2|192_1(f2 _fQ*)

The last term of this equation can be eliminated by noting: It should be noted that the second term above is not
. . orthogonal to the first term as is the case in Equation 20.
JoNiNaoNy - = JoNi(I = J2J2) Ny This begs the question of whether this control law is optimal

= JoNy — JoNyJoJo Ny for any criterion of the form of Equation 6. This question can
— J,N; — J2N1(W%J2N1)+W%J2N1 be answered using the Lagrange multiplier method. We are

X L interested in control laws that minimize

= w3 [WiJgNl

1 1 1 f(q) = (JQq_ﬁ)TW(JQQ_ﬁ)

—W2J2N1(W2J2N1)+W2J2N1

- 0 subject to

g(Q):'qu_a:O7

) . . wherea = Q7' (fi — f) — JigandB = Qy ' (f2 — £3) — Jad.
Fo = Jodo [Q;l(fQ — ) - ,]2(4 + Jag Differentiating f and g and constructing the Lagrangian, we
) . have
(I = Ja2) T2 Iy [ﬂfl(fl - I - qu] - (20) W+ G T W s — BTW Iy = 0, (23)

Therefore, the resulting closed-loop impedanceats:

Equation 20 can be understood by recognizing thaf, Wwhere h is the Lagrange multiplier. Equation 23 must be
and (I — J».J,) are orthogonal weighted projection matricessatisfied for some value of at an optimum. Equivalently,
JoJo(I — JoJs) = 0. The first term is projected throughwe can require:

JoJ> and describes the contribution of the second-priority T . T
impedance to the closed-loop acceleration£fThe last term Ny [JQ WJaG — J3 Wﬁ} =0.

is projected through/ — J»J,) and describes the effect thatggying for j by substituting Equation 22 into Equation 1 and
the first-priority impedance objective has on the Close(p'c’%ubstituting into the above, the condition becomes:
behavior at the second-priority POR. Notice that the second

priority impedance operates completely independentiyhian t N, [JQTI/I/'JQJ\/_F1 (J1TA1a + J2T|1A2|15) - J;Wﬁ} =0.
range space of/,.J,. Multiplying both sides of Equation 20

by Jo.J», we have: Since we must assumeto be arbitrary, the condition is only

. N . satisfied when
Jodois = J2 2y (f2 — f3)-

E. Comparison to Sentis-Khatib

These closed-loop dynamics may be compared to the
namics of the multi-priority Sentis-Khatib control law. 8=d
on [6], the Sentis-Khatib control law is:

N JIW LM~ JF A = 0. (24)

diowever, since there is no fixéd” such that Equation 24 is
tfue for arbitrarya, Equation 22 cannot be optimal.

IV. IMPEDANCE CONTROL WITHOUT FORCE SENSORS

T o= J'n [Ql‘l(fl - - J'lq'} An important concern with multi-priority impedance coritro
T 1 . . as it is expressed in Equation 18 is the need to sense exjernal
5121 {Qz (fa=1f3)— J2CI} - (22) applied loads at two different points on the manipulatorilé/h

this may be feasible in some cases, it is important to address

In the above control law, we have used the case where such feedback is not available.

—1 7T \—
Aogjy = (Jop M 1‘]2\1) ' A. Control Law

and Consider Equation 17, and suppose that the joint torque

Jopp = JaNw, caused by all externally applied loads) (is substituted for
jpach instance offif fi or JIfo. Let Ay = (JyM—1JE)1

be the passive manipulator inertia described in Cartesian
coordinates at the first-priority POR. L&t = (Jo M ~1JI)~1

Ny =1—- M Jrom=ah)=1,. be the similar quantity at the second-priority POR. Set the

whereN 4 is the inertia-weighted null space of the first priorit
objective:



desired Cartesian inertias to these passive valiles= A; Note the similarities between the closed-loop impedanceab

and Q. = A,. Then, Equation 17 becomes: and the desired impedance in Equation 2. When all external
S D loads are applied to the first-priority POR such that J{ f1,
w o= —MNJF ATV + ] then:
. . -1 _
—MJ [A5" 5 + Jad] A A= i
FMNyJF T M7 and Equation 27 is identical to Equation 2. When external

loads are applied to both PORs such that J{ f; + JI fo,

T —1
+MJ2J%M T then loads applied to the second-priority POR, are pro-
+MN;NaN, 3 jected through\,.J; M ~1JI onto the first-priority POR:
—T. (25)

MIM ™= fi + MMM YIT fo.
Since the value off does not affect the closed-loop behavior

of the control law with respect to the first- or second-ptiori
impedance objectives, sét= M ~'7+~, wherey is arbitrary.
Then the last four terms of Equation 25 are:

Substituting Equation 26 into the equation of motion (Equa-
tion 1) and using the fact that, = J>G + J24, the dynamics
of the first-priority POR are:
= LMt — JNoJT (AT + 1)
—JoJo(AT 5 + J2g) + Jag
= LM — (I = JoJdo)JF (AT + J1d)
—JQjQAl_lf; + (I — JQjQ)JQQ

M NQJFJl +j2J2 +N1N2N1 M_lT—T—i-NlNQNl’y. T2

This expression can be simplified using Equation 14 to find
that

NiNoNy = Ni(I - JoJo) Ny
= (N1 — N1JoJs)Ny

(N1 — JaJ2) Ny . R

(I - jQJQ)Nl JodJaig = JQJQ(JQMﬁlT — A;lf;) (28)

= N,N;. If all external loads are applied to the second-priority POR
thenr = JI f, and Equation 28 becomes Equation 21 for
%, = As. Ifloads are applied to both PORs= JI fa+JZ fa,
then the load applied to the first-priority POR is projectetbo
M [NngrJl + Jody + N2N1:| M=t — 7+ N,N;y the second-priority POR.

Multiplying the above by.,.J,, the resulting closed-loop
behavior at the second-priority POR is:

Therefore, the last four terms of Equation 25 can be simglifi
as follows:

- M [NQ + jQJQ} MYt — 74 NyNivy V. SIMULATION

— MM 'r— 1+ NaNiy The dual-prioriFy apprc_)ac_:h proposed in this paper_is_ com-
RN pared to both a single-priority approach and the Sentistikha

= 24V17-

dual-priority control law (Section IlI-E) in the context &t
As a result, Equation 25 can be re-written without therms:  simple regrasp problem.

o= ~MNJF [ATf o+ ] A. Overview
ATCr TN Figure 2 illustrates the simulation scenario. Both fingers
—MJ; [ 2 fat ng} are intially in contact with an object and touching it lightl
+M]\72N17. (26) (the entir.e manipulator is. iIIustratgd in Figure 1.). The knoh
. ] problem is to move one finger while the other finger applies a
This control law has the same closed-loop impedance as deggy|| inward force with a constant impedance. For example,
Equation 18 in the special case thaf = A, and{2; = As.  thjs pehavior could be important in an assembly application
Since it does not require Cartesian force sensors to be @OURfhere one finger needs to maintain a constant force (perhaps
at the first- and seSond-pnont'}/ PORs, this control law W#l i, order to keep a part in place) while the other finger moves
referred to as the “zero-force” dual-priority control IafWhe  into a new grip position. What makes this a potentially diffic
forces are not zero, but we do not need to measure them.},roplem is that the first finger is not fully mobile with respec
B. Analysis to the _second finger. In vi_ew of Figure 1,_ notice that the two
The analysis of the zero-force dual-priority Cartesiaff'1ngertlps may only move independently in a plane; the wrist

. . o . “must swivel in order to move one of the fingers out of plane.
impedance control law (Equation 26) is similar to the analys,, . : ) . o
It is not possible to move one finger to an arbitrary position

performed in Section IlI-D. Substituting Equation 26 into : - : .
the equation of motion (Equation 1) and using the fact th\évth"e keepingboth the position and orientation of the second

. r s : e . Tinger fixed. If the position reference of the first finger canno
1= 14+ J1g, the dynamics of the first-priority POR are: be fully reached while maintaining the pose and impedance

Ay + ff = My LM (27) of the second finger, then one or the other objective must



and should only be discarded when significant advantages are
offered by a dual-priority law.
1) Single-priority control law: The single-priority law is:

w=JTf* + MJ*JG+ MNB;q. (29)

Upper arm

This achieves a desired impedance,
Y AgZs + fs* = fsa

‘ ix whereiT = (j1,ws,p2) is a generalized acceleratiof, is
z the passive manipulator inertia projected into the cowwadp

ing operational space coordinates, afidis the generalized
force. Both desired impedances are combined into a single
impedance objective:

Forearm

J10 Fingers 111

BY 0 0 KF 0 0
fi=( o B 0o |i,+| 0 Kj o0 |z,
POR 1 POR 2 0 0 Bg 0 0 Kg

where KV = diag(45) (Newtons per Meter) and3} =

) ) i ) diag(25) (Newton-seconds per Meter) are the desired transla-
Fig. 1.  The bifurcated manipulator (not drawn to scale) ugedhe . . . r .
simulations. A POR is defined at the end of each “finger.” tional stiffness and dampllng of POR Ki = diag(10) and .
B} = diag(5) are the desired angular stiffness and damping
of POR 1, andK} = diag(20) and BY = diag(25) are the
desired translational stiffness and damping of POR 2. The
corresponding Jacobian is

Ju

J=1 J7 |,
J3

where J? and Jj describe the Cartesian translational and
angular velocities (respectively) at POR 1 adg is the
translational Jacobian for POR 2.

' N _ _ T 2) Dual-priority control law: The single-priority control
Fig. 2. The manipulation scenario. The two-finger manipulas initially | b d he dual L. Ll
contacting the object lightly. At the start of the simulaicthe right finger '@W & O\_/e was comp_are T[O _t € _ua_ priority contro_ aw
impedance position reference changes so that the fingermwgite in the 0of Equation 18. The first priority objective was to realize a

direction of the dashed arrow. The left finger impedance mesnanchanged {ranslational and angular desired impedance at POR 1
so that it will continue to apply a light inward force on thejeti. The '
dual-priority control law must move the right finger withoabanging the A7 *

impedance of the left finger. 121+ fl fr-

&1 = (p1,wn) is the acceleration it E(3). A, is the corre-
sponding passive operational space inerfia,is the desired

be “sacrificed.” In this application scenario, it is desleab damping and stiffness,
to sacrifice those aspects of the first finger objective so that . ( B 0 ) i ( KP 0 )
1 1

regardless of how the finger is commanded to move, the second 0 B 0o K z1,  (30)

finger is assured of maintaining a constant impedance. _ . .
The entire manipulator is illustrated in Figure 1. The thre@d /1 IS the corresponding externally applied load. The

links proximal to the bifurcation will be referred to, in @d S€cond priority objective was to realize just a translatlon
proximal to distal, as: the “upper arm”, the “forearm”, ahet impedance at POR 2 — not an angular impedance,
“palm.” The two branches will be referred to as the “fingers.” Nopo + f3 = fo,

The lengths, masses, and moments of inertia are given in . ] ) o ] )
Table 1. Note that the finger masses and inertias are laNjB€reAz is the passive manipulator inertia projected into the

enough to be of the same order as the arm. A POR is defirfé@nslational Euclidean coordinates for POR 2, dds the
at the tip of each of the two fingers. externally applied force at POR 2. The desired POR 2 damping

and stiffness is:
B. Comparison with a single-priority control law
L " fs = Bipa + K§pa. (31)
For reference, the dual-priority control law proposed iis th
paper was compared to a single priority control law. Comghare Figure 3 compares the performance of the two control laws
with the dual-priority control law, this is a simpler altative when the first-priority POR reference pose is the same as



Link Length | Mass | Iuz Lyy I..
upper arm| 0.38m | 6.8Kg | 0.082 | 0.082 | 0.0082
forearm 0.35m | 5.5Kg | 0.056 | 0.056 | 0.0056

palm 0.1m 2Kg 0.01 | 0.01 0.001
finger link | 0.1m 1Kg 0.005 | 0.005 | 0.0005
TABLE |

DYNAMIC PARAMETERS OF SIMULATED ARM. I, IS THE MOMENT OF INERTIA ABOUT THE LINK AXIS. I35 AND Iyy ARE THE REMAINING TWO
ORTHOGONAL MOMENTS OF INERTIA ALL FINGER LINKS HAVE THE SAME DYNAMIC PARAMETERS.

POR1 position POR1 orientation about y—axis POR2 position

Meters
Degrees
Meters

1 1 1
Seconds Seconds Seconds

(@) (b) (©)

Fig. 3. Comparison between the dual-priority control lawpgmsed in this paper (the black line) and a single-priorimtmller (the blue line).

in the starting configurationp; = p2(0) and 5 = r2(0), compared the Sentis-Khatib control law in Equation 22 with
the second-priority POR reference position is changgd= the proposed dual-priority control law in Equation 18. Both
(0.96,1.016,0)7, and no external forces are applied to theontrol laws are parameterized with the desired first- and
manipulator. First, notice that the dual-priority contlalv second-priority impedances given in Equations 30 and 31.
(the black line in Figure 3) keeps POR 1 in approximately Figure 4(a) and (b) demonstrates that both dual-priority
the same position and orientation during the interactioilevh control laws realize the first-priority impedance almostaty
the single-priority control law (the blue line) allows PORdL well (the proposed control law does a bit worse in keeping the
move. This is not suprising because the single priority i@nt orientation constraint.) This is expected since it is pussio
law does not enforce the prioritization. Second, notice thaubstitute either control law into the manipulator dynasmic
Figure 3(c) shows that the single-priority control law getéEquation 1), solve for the POR 1 accelerations, and arrive
closer to achieving the POR 2 objective than the dual-gyioriat Equation 2. However Figure 4(c) illustrates the diffeen
controller. Since the single-priority controller allowd?OR regarding POR 2. The control law of this paper (the black
1 to move and rotate from the reference, theoordinate line) converges to the position nearest (Euclidian norne) th
of the POR 2 position (the glue line in Figure 3(c)) moveBOR 2 reference position while the Sentis-Khatib contral la
toward the0.96 reference (although it does not reach theonverges elsewhere (the blue line). This result demaestra
reference because it is balancing the POR 1 objective thst the theoretically suboptimal performance demorestrat
well). Nevertheless, since the PORy2dimension (the top Equation 24 can have a significant practical impact.
line in Figure 3(c)) is unconstrained with respect to the
POR 1 objectives, both the single- and dual-priority contro VIl. CONCLUSION
laws realize thg/-dimension objective with approximately the - Multi-priority Cartesian impedance control is important
same performance. In contrast, the dual-priority conta® | pecause it enables the robot programmer to control a complex
maintains constant POR 1 position and orientation. PORpZanipulator in terms of desired Cartesian impedances at
position error is minimized in the directions that do notmg@  multiple PORs. This is the natural extension of single end-
POR 1 orientation and ignored in the directions that do.  effector control to branching manipulators. The prioéitinn
is necessary to resolve conflicts between different oljesti
Although multi-priority motion control can achieve pribzied
Section IlI-E demonstrated that the proposed dual-pyioritnotions that are similar to what can be achieved with multi-
control law has certain theoretical advantages relativehéo priority impedance control, these motions are not robust an
Sentis-Khatib control law. These differences have an itgmr predictable when the possibility of contact exists. Mafapu
effect on the overall performance of the control law. The twtion and assembly applications, in particular, requirecéya
control laws are compared under the same conditions ughd type of behavior that this paper has considered: motion
above to compare with the single priority law. The simulatioof a second-priority POR while the first-priority POR acts

VI. COMPARISON WITHSENTIS-KHATIB
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Fig. 4. Comparison between the dual-priority controlleopwsed in this paper (the black line) and the Sentis Khatdd-gtority controller (the blue line).
(a) and (b) show similar performance for both control lawghwespect to the first priority impedance objective whilg gbows that the proposed controller
has better performance with respect to the second priarijedance.

with a constant desired force or impedance. This paper makeg C. Natale, B. Siciliano, and L. Villani, “Spatial impedce control
tWO maln Contrlbutlons ':lrst7 we propose a |0ca”y Optlmal of redundant manlpulators,” iNEEE Int'l Conf. on Robotics and

dual-priority i d trol | for th | h Automation, 1999, pp. 1788-1793.
ual-priority Impedance control law 10r the general casemw [15] A. Albu-Schffer and G. Hirzinger, “Cartesian impedancontrol tech-

end-effector load measurements may or may not be available. niques for torque controlled light-weight robots,” iBEE Int'l Conf. on

Second, we analyze the performance of the control law jn_ Robotics and Automation, 2002, pp. 657-663.
] C. Ott, A. Kugi, and Y. Nakamura, “Resolving the problemf non-

: - o oY [16
theory and relative to the existing multi-priority impedan integrability of nullspace velocities for compliance cmtof redundant
control literature. manipulators by using semi-definite lyapunov functions,1EEE Int'|
Conf. on Robotics and Automation, 2008, pp. 1999 — 2004.
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