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Abstract— Manipulator compliance is well known to be im-
portant to robot manipulation and assembly. Recently, thishas
been highlighted by the development of new higly-compliant
robot manipulators such as the Barrett arm or the DLR
lightweight manipulator [1], [2]. It is also clear that dexterous
manipulation involves touching the environment at different
locations simultaneously (perhaps at different points on the robot
hand or fingers). In these situations, it is particularly attractive
to control the system using a multi-priority strategy where
several contact points are commanded in parallel. Multi-priority
Cartesian impedance control is the natural combination of these
two ideas. The system realizes several impedances with different
reference positions at different points on the robot with a specified
order of priority. We find a controller that minimizes an arbi trary
quadratic norm on the second-priority impedance error subject
to constraints deriving from the first priority impedance ta sk.
We also show that the locally optimal controller does not require
force feedback in its implementation for passive desired inertias.
The results are illustrated in simulation.

I. I NTRODUCTION1

Since the earliest days of robotics, researchers have been
aware of the possibility of controlling second-priority objec-
tives using degrees of freedom (DOFs) that are redundant
with respect to a first-priority task [3], [4], [5]. However,
the advent of high-DOF humanoid robots make it possible to
consider executing more than two tasks simultaneously [6],
[7]. This approach to robot control is particularly relevant
to manipulation tasks where high-DOF hand-arm systems
must be controlled so as to interact with an environment
at a few desired contact regions. However, it is ironic that
although end-effector compliance is important to robust ma-
nipulation, relatively little research exists that studies multi-
priority impedance control. This paper addresses this deficit by
proposing a locally-optimal dual-priority impedance law.First,
we propose a general law that uses force feedback to realize
an arbitrary dual-priority impedance. Then, we characterize
the subset of impedances that can be realized using torque
controlled manipulators without force sensors. In contrast to
prior work, we consider the space of all possible control laws
that realize the first-priority impedance and select the onethat
is optimal with respect to an arbitrary quadratic optimization
criterion.

The multi-priority approach to robot manipulator control has
been studied extensively. Many early approaches calculated

1Portions of this publication have patents pending.

joint velocities that attempt to achieve a second-priorityobjec-
tive (such as avoiding obstacles or manipulator singularities)
while achieving a desired end-effector velocity [4], [5], [8].
Chiaverini considers a damped-least-squares version of the
control law that is robust to algorithmic singularities [9].
Antonelli provides a Lyapunov analysis demonstrating thatthe
basic approach is stable [10]. Related approaches have been
applied in more general contexts [11], [12].

A significant body of work explores the general problem
of impedance control in the context of redundant manipu-
lators. Building on Hogan’s early work [13], Nataleet. al.
propose a version of the impedance controller that correctly
handles angular impedances [14]. Albu-Schaffer and Hirzinger
propose a dual-priority impedance architecture where the
end-effector impedance and null space joint impedance are
controlled separately using a stiffness formulation [15].Ott
et. al. demonstrate stability even though the redundant space
is non-integrable [16].

In contrast to the above, the current paper considers the
question of simultaneously controlling the impedance at mul-
tiple end-effectors. Rather than stabilizing an arbitraryparam-
eterization of the redundant space, this paper optimizes for
an integrable operational space objective. To our knowledge,
the most closely related work on the subject is the multi-
priority framework of Sentis and Khatib [6], [17]. In their
work, the multi-priority objectives are realized by projecting
lower-priority objectives into the dynamically consistent null
space. Although this formulation keeps the first priority task
independent of the lower-priority tasks, it does not optimize for
second-priority performance. The current paper explores this
point. We provide a control law that minimizes quadratic error
with respect to the desired lower-priority impedance while
still ensuring independence of the first-priority objective. It
turns out that for the optimal dual-priority controller, itis
possible to identify the operational space directions where the
second-priority task is independent of the first-priority task.
These independent directions can be adjusted by changing the
weighting matrix used by the optimization criterion.

II. BACKGROUND

A. Generalized equation of motion

The dynamic motion of a robot arm withn revolute joints
is typically understood in terms of the following generalized



equation of motion:

Mq̈ + η = τa + τ,

whereM is the n × n manipulator inertia matrix,̈q is an
n-vector of manipulator joint accelerations,τ is ann-vector
of joint torques resulting from externally applied loads,τa
is a vector of actuator torques, andη describes the sum of
frictional, coriolis, centrifugal, and gravitational torques [18].
The dependence of these terms on manipulator configuration is
implicitly assumed. In order to simplify notation, we introduce
the following substitution:

τa = u+ η,

such that the equation of motion can be expressed in terms of
a command vector,u:

Mq̈ = u+ τ. (1)

B. Operational space

It is frequently useful to design controllers defined in
operational space coordinates rather than in joint space. While
the term “operational space” may refer to any coordinate
system relevant to a robot task, it usually refers to the space of
positions and orientations of the end-effector represented by a
parameterization ofSE(3). In this paper,SE(3) is parameter-
ized using exponential coordinates whereby a Cartesian pose is
encoded by a 6-vector with the first three numbers describing
position and the last three numbers describing orientation
using the axis-angle representation [19]. The Cartesian ve-
locity of the end-effector will be represented as a twist and
the acceleration as the derivative of twist. Similarly, loads in
Cartesian space will be written as wrenches (six-vector that
concatenates a force and a moment) [19]. The end-effector
Jacobian,J , relates joint velocities,̇q, to Cartesian twists at
the end-effector,̇x: ẋ = Jq̇.

III. D UAL PRIORITY CARTESIAN SPACE IMPEDANCE

CONTROL

Dual priority Cartesian impedance control is defined with
respect to two points of reference (PORs). A POR is a
reference frame attached to the manipulator that is the ob-
ject of Cartesian control. In general, dual priority Cartesian
impedance control realizes two different impedance laws de-
fined with respect to two different PORs simultaneously. One
impedance objective is first-priority while the other is second-
priority. Dual-priority Cartesian impedance control minimizes
error with respect to the first-priority impedance objective
while also realizing the second-priority objective to the great-
est extent possible.

A. Problem statement

Let x1, ẋ1, ẍ1, and f1 be the pose, twist, acceleration,
and externally applied wrench associated with the first-priority
POR. Definex2, ẋ2, ẍ2, and f2 similarly for the second-
priority POR. The goal of dual-priority impedance control is
to realize the first-priority impedance objective,

Ω1ẍ1 + f∗
1 = f1, (2)

as completely as possible given the mechanics of the manip-
ulator, where

f∗
1 = B1ẋ1 +K1x̃1, (3)

Ω1 is the desired inertia,B1 is the desired damping,K1 is the
desired stiffness, and̃x1 is the pose error in the first-priority
POR. In addition, dual-priority Cartesian impedance control
must also minimize error with respect to the second-priority
impedance objective,

Ω2ẍ2 + f∗
2 = f2, (4)

to the greatest extent possible while not impacting perfor-
mance with regard to the first-priority objective, where

f∗
2 = B2ẋ2 +K2x̃2, (5)

Ω2 is the desired inertia,B2 is the desired damping,K2 is the
desired stiffness, and̃x2 is the pose error at the second-priority
POR.

B. Optimization criterion

The possibility of realizing two Cartesian space impedances
depends on the degree of mobility between the two PORs. In
general, it is not possible to realize both Cartesian impedances
concurrently because the two PORs are not necessarily suf-
ficiently mobile with respect to each other. Therefore, the
multiple-priority approach applies actuator torques suchthat
the primary impedance objective is achieved while minimizing
an optimization criterion associated with the second-priority
impedance objective. We restrict our attention to the case
where the optimization criterion is the weighted squared
magnitude of the Cartesian acceleration at the second-priority
POR:

ε = (ẍ2 − ẍ′
2)

TW (ẍ2 − ẍ′
2)

= zT z, (6)

where ẍ′
2 is the desired Cartesian space acceleration at the

second-priority POR and:

z = W
1

2 (ẍ2 − ẍ′
2). (7)

The goal of dual-priority Cartesian impedance control is
to minimize Equation 6 while realizing the first-priority
impedance in Equation 2.

C. Control Law

The first-priority Cartesian impedance constrains the space
of joint accelerations that must be considered. Substituting
J1q̈+ J̇1q̇ for ẍ1 in Equation 2 and taking the pseudo-inverse,
we have:

q̈ = J+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇ q̇

]

+N1λ, (8)

whereN1 = I − J+

1
J1 andλ is arbitrary. Usingẍ2 = J2q̈ +

J̇2q̇, the space of Cartesian accelerations at the second-priority
POR consistent with the first-priority impedance is:

ẍ2 = J2J
+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇ q̇

]

+ J̇2q̇ + J2N1λ. (9)



Among those joint accelerations permitted by the constraint,
we must find one that minimizes the optimization criterion.
This can be achieved by solving Equation 9 for the value ofλ

that minimizesε (Equation 6), or equivalently,z (Equation 7).
Solving Equation 4 for the desired acceleration at the second
POR, we have:

ẍ′
2 = Ω−1

2 (f2 − f∗
2 ).

Substituting Equation 9 into Equation 7 forẍ2 and usingẍ′
2

above, we have:

z = W
1

2 (ẍ2 − ẍ′
2)

= W
1

2

[

J2J
+

1

(

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

)

+ J̇2q̇

−Ω−1

2 (f2 − f∗
2 ) + J2N1λ

]

. (10)

The value ofλ that minimizeszT z can be found using the
pseudo-inverse:

λ = Ĵ2

[

Ω−1

2
(f2 − f∗

2 )− J̇2q̇
]

−Ĵ2J2J
+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

]

+(I − Ĵ2J2N1)β, (11)

where

Ĵ2 = (W
1

2J2N1)
+W

1

2 . (12)

The term (I − Ĵ2J2N1)β (for arbitrary β) represents the
additional freedoms left over in the case that the second-
priority optimization criterion does not completely determine
the motion of all joints. The matrix(I − Ĵ2J2N1) is an
orthogonal projection matrix that spans the joint accelerations
irrelevant to either objective.

The joint accelerations that realize the first-priority
impedance (Equation 2) while also minimizing the optimiza-
tion criterion with respect to the second-priority impedance
(Equation 4) can be found by substitutingλ back into Equa-
tion 8:

q̈ = J+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

]

+N1Ĵ2

[

Ω−1

2 (f2 − f∗
2 )− J̇2q̇

]

−N1Ĵ2J2J
+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

]

+N1(I − Ĵ2J2N1)β. (13)

This equation can be simplified by using the fact that for any
matrix,A, the following is true:A+ = AT (AAT )+. Therefore,
we have that:

N1Ĵ2 = N1(W
1

2J2N1)
+W

1

2

= N1(N1J
T
2 W

1

2 )(W
1

2J2N1J
T
2 W

1

2 )+W
1

2

= (N1J
T
2 W

1

2 )(W
1

2J2N1J
T
2 W

1

2 )+W
1

2

= Ĵ2. (14)

As a result, Equation 13 becomes:

q̈ = N̂2J
+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

]

+Ĵ2

[

Ω−1

2 (f2 − f∗
2 )− J̇2q̇

]

+N1N̂2N1β. (15)

where
N̂2 = (I − Ĵ2J2). (16)

Substituting into the equation of motion (Equation 1) forq̈,
we have:

u = Mq̈ − τ

= MN̂2J
+

1

[

Ω−1

1
(f1 − f∗

1 )− J̇1q̇
]

+MĴ2

[

Ω−1

2 (f2 − f∗
2 )− J̇2q̇

]

+MN1N̂2N1β − τ. (17)

In order to realize Equation 17 in practice, it is necessary
to measure the externally applied loads. This might be ac-
complished by measuring the loads,f1 andf2, applied at the
first- and second-priority PORs and assuming that no external
loads are applied elsewhere on the manipulator. Accordingly,
we have:

τ = JT
1 f1 + JT

2 f2.

Substituting into Equation 17, we have:

u = Mq̈ − τ

= MN̂2J
+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

]

+MĴ2

[

Ω−1

2 (f2 − f∗
2 )− J̇2q̇

]

+MN1N̂2N1β − JT
1 f1 − JT

2 f2. (18)

The control law in Equation 18 solves the problem proposed in
Section III-A while minimizing the Cartesian accelerationof
the second-priority POR and assuming that externally applied
wrenches at each POR can be measured directly.

D. Analysis

The closed-loop behavior of the dual-priority Cartesian
impedance controller (Equation 18) can be understood in terms
of the Cartesian accelerations at the first- and second-priority
PORs. First, note that:

J1Ĵ2 = J1(W
1

2J2N1)
+W

1

2

= J1N1J
T
2 W

1

2 (W
1

2J2N1J
T
2 W

1

2 )+W
1

2

= 0.

Therefore, we have that:

J1N̂2 = J1(I − Ĵ2J2)

= J1. (19)

Using the above results and substituting Equation 15 intoẍ1 =
J1q̈ + J̇1q̇, the Cartesian acceleration at the first POR is:

ẍ1 = Ω−1

1 (f1 − f∗
1 ),



thereby realizing the desired first-priority impedance.
The Cartesian acceleration of the second-priority POR can

be calculated using̈x2 = J2q̈ + J̇2q̇:

ẍ2 = J2Ĵ2

[

Ω−1

2 (f2 − f∗
2 )− J̇2q̇

]

+ J̇2q̇

+(I − J2Ĵ2)J2J
+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

]

+J2N1N̂2N1β.

The last term of this equation can be eliminated by noting:

J2N1N̂2N1 = J2N1(I − Ĵ2J2)N1

= J2N1 − J2N1Ĵ2J2N1

= J2N1 − J2N1(W
1

2J2N1)
+W

1

2J2N1

= W− 1

2

[

W
1

2J2N1

−W
1

2J2N1(W
1

2J2N1)
+W

1

2J2N1

]

= 0.

Therefore, the resulting closed-loop impedance atx2 is:

ẍ2 = J2Ĵ2

[

Ω−1

2 (f2 − f∗
2 )− J̇2q̇

]

+ J̇2q̇

+(I − J2Ĵ2)J2J
+

1

[

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

]

. (20)

Equation 20 can be understood by recognizing thatJ2Ĵ2
and (I − J2Ĵ2) are orthogonal weighted projection matrices:
J2Ĵ2(I − J2Ĵ2) = 0. The first term is projected through
J2Ĵ2 and describes the contribution of the second-priority
impedance to the closed-loop acceleration ofx2. The last term
is projected through(I − J2Ĵ2) and describes the effect that
the first-priority impedance objective has on the closed loop
behavior at the second-priority POR. Notice that the second-
priority impedance operates completely independently in the
range space ofJ2Ĵ2. Multiplying both sides of Equation 20
by J2Ĵ2, we have:

J2Ĵ2ẍ2 = J2Ĵ2Ω
−1

2 (f2 − f∗
2 ). (21)

E. Comparison to Sentis-Khatib

These closed-loop dynamics may be compared to the dy-
namics of the multi-priority Sentis-Khatib control law. Based
on [6], the Sentis-Khatib control law is:

τ = JT
1 Λ1

[

Ω−1

1 (f1 − f∗
1 )− J̇1q̇

]

+JT
2|1Λ2|1

[

Ω−1

2
(f2 − f∗

2 )− J̇2q̇
]

. (22)

In the above control law, we have used

Λ2|1 = (J2|1M
−1JT

2|1)
−1

and
J2|1 = J2NM ,

whereNA is the inertia-weighted null space of the first priority
objective:

NM = I −M−1JT
1 (J1M

−1JT
1 )−1J1.

Substituting back into the equation of motion (Equation 1) and
solving for ẍ1, we arrive at Equation 2, demonstrating that
the second-priority objective does not influence the dynamics
of the first-priority objective. However, substituting into the
equation of motion and solving for̈x2, we get:

ẍ2 = J2M
−1JT

1 Λ1Ω
−1

1 (f1 − f∗
1 )

+J2M
−1JT

2|1Λ2|1Ω
−1

2 (f2 − f∗
2 ).

It should be noted that the second term above is not
orthogonal to the first term as is the case in Equation 20.
This begs the question of whether this control law is optimal
for any criterion of the form of Equation 6. This question can
be answered using the Lagrange multiplier method. We are
interested in control laws that minimize

f(q̈) = (J2q̈ − β)TW (J2q̈ − β)

subject to
g(q̈) = J1q̈ − α = 0,

whereα = Ω−1

1 (f1−f∗
1 )− J̇1q̇ andβ = Ω−1

2 (f2−f∗
2 )− J̇2q̇.

Differentiatingf and g and constructing the Lagrangian, we
have

hTJ1 + q̈TJT
2 WJ2 − βTWJ2 = 0, (23)

where h is the Lagrange multiplier. Equation 23 must be
satisfied for some value ofh at an optimum. Equivalently,
we can require:

N1

[

JT
2 WJ2q̈ − JT

2 Wβ
]

= 0.

Solving for q̈ by substituting Equation 22 into Equation 1 and
substituting into the above, the condition becomes:

N1

[

JT
2 WJ2M

−1

(

JT
1 Λ1α+ JT

2|1Λ2|1β
)

− JT
2 Wβ

]

= 0.

Since we must assumeα to be arbitrary, the condition is only
satisfied when

N1J
T
2 WJ2M

−1JT
1 Λ1α = 0. (24)

However, since there is no fixedW such that Equation 24 is
true for arbitraryα, Equation 22 cannot be optimal.

IV. I MPEDANCE CONTROL WITHOUT FORCE SENSORS

An important concern with multi-priority impedance control
as it is expressed in Equation 18 is the need to sense externally
applied loads at two different points on the manipulator. While
this may be feasible in some cases, it is important to address
the case where such feedback is not available.

A. Control Law

Consider Equation 17, and suppose that the joint torque
caused by all externally applied loads (τ ) is substituted for
each instance ofJT

1 f1 or JT
2 f2. Let Λ1 = (J1M

−1JT
1 )−1

be the passive manipulator inertia described in Cartesian
coordinates at the first-priority POR. LetΛ2 = (J2M

−1JT
2 )−1

be the similar quantity at the second-priority POR. Set the



desired Cartesian inertias to these passive values:Ω1 = Λ1

andΩ2 = Λ2. Then, Equation 17 becomes:

u = −MN̂2J
+

1

[

Λ−1

1 f∗
1 + J̇1q̇

]

−MĴ2

[

Λ−1

2 f∗
2 + J̇2q̇

]

+MN̂2J
+

1
J1M

−1τ

+MĴ2J2M
−1τ

+MN1N̂2N1β

−τ. (25)

Since the value ofβ does not affect the closed-loop behavior
of the control law with respect to the first- or second-priority
impedance objectives, setβ = M−1τ+γ, whereγ is arbitrary.
Then the last four terms of Equation 25 are:

M
[

N̂2J
+

1 J1 + Ĵ2J2 +N1N̂2N1

]

M−1τ − τ +N1N̂2N1γ.

This expression can be simplified using Equation 14 to find
that

N1N̂2N1 = N1(I − Ĵ2J2)N1

= (N1 −N1Ĵ2J2)N1

= (N1 − Ĵ2J2)N1

= (I − Ĵ2J2)N1

= N̂2N1.

Therefore, the last four terms of Equation 25 can be simplified
as follows:

M
[

N̂2J
+

1 J1 + Ĵ2J2 + N̂2N1

]

M−1τ − τ + N̂2N1γ

= M
[

N̂2 + Ĵ2J2

]

M−1τ − τ + N̂2N1γ

= MM−1τ − τ + N̂2N1γ

= N̂2N1γ.

As a result, Equation 25 can be re-written without theτ terms:

u = −MN̂2J
+

1

[

Λ−1

1 f∗
1 + J̇1q̇

]

−MĴ2

[

Λ−1

2 f∗
2 + J̇2q̇

]

+MN̂2N1γ. (26)

This control law has the same closed-loop impedance as does
Equation 18 in the special case thatΩ1 = Λ1 andΩ2 = Λ2.
Since it does not require Cartesian force sensors to be mounted
at the first- and second-priority PORs, this control law willbe
referred to as the “zero-force” dual-priority control law.(The
forces are not zero, but we do not need to measure them.)

B. Analysis

The analysis of the zero-force dual-priority Cartesian
impedance control law (Equation 26) is similar to the analysis
performed in Section III-D. Substituting Equation 26 into
the equation of motion (Equation 1) and using the fact that
ẍ1 = J1q̈ + J̇1q̇, the dynamics of the first-priority POR are:

Λ1ẍ1 + f∗
1 = Λ1J1M

−1τ. (27)

Note the similarities between the closed-loop impedance above
and the desired impedance in Equation 2. When all external
loads are applied to the first-priority POR such thatτ = JT

1 f1,
then:

Λ1J1M
−1τ = f1.

and Equation 27 is identical to Equation 2. When external
loads are applied to both PORs such thatτ = JT

1 f1 + JT
2 f2,

then loads applied to the second-priority POR,f2, are pro-
jected throughΛ1J1M

−1JT
2 onto the first-priority POR:

Λ1J1M
−1τ = f1 + Λ1J1M

−1JT
2 f2.

Substituting Equation 26 into the equation of motion (Equa-
tion 1) and using the fact thaẗx2 = J2q̈ + J̇2q̇, the dynamics
of the first-priority POR are:

ẍ2 = J2M
−1τ − J2N̂2J

+

1 (Λ−1

1 f∗
1 + J̇1q̇)

−J2Ĵ2(Λ
−1

1 f∗
2 + J̇2q̇) + J̇2q̇

= J2M
−1τ − (I − J2Ĵ2)J

+

1 (Λ−1

1 f∗
1 + J̇1q̇)

−J2Ĵ2Λ
−1

1 f∗
2 + (I − J2Ĵ2)J̇2q̇.

Multiplying the above byJ2Ĵ2, the resulting closed-loop
behavior at the second-priority POR is:

J2Ĵ2ẍ2 = J2Ĵ2(J2M
−1τ − Λ−1

2 f∗
2 ). (28)

If all external loads are applied to the second-priority POR,
then τ = JT

2 f2 and Equation 28 becomes Equation 21 for
Ω2 = Λ2. If loads are applied to both PORs,τ = JT

1 f2+JT
2 f2,

then the load applied to the first-priority POR is projected onto
the second-priority POR.

V. SIMULATION

The dual-priority approach proposed in this paper is com-
pared to both a single-priority approach and the Sentis-Khatib
dual-priority control law (Section III-E) in the context ofa
simple regrasp problem.

A. Overview

Figure 2 illustrates the simulation scenario. Both fingers
are intially in contact with an object and touching it lightly
(the entire manipulator is illustrated in Figure 1). The control
problem is to move one finger while the other finger applies a
small inward force with a constant impedance. For example,
this behavior could be important in an assembly application
where one finger needs to maintain a constant force (perhaps
in order to keep a part in place) while the other finger moves
into a new grip position. What makes this a potentially difficult
problem is that the first finger is not fully mobile with respect
to the second finger. In view of Figure 1, notice that the two
fingertips may only move independently in a plane; the wrist
must swivel in order to move one of the fingers out of plane.
It is not possible to move one finger to an arbitrary position
while keepingboth the position and orientation of the second
finger fixed. If the position reference of the first finger cannot
be fully reached while maintaining the pose and impedance
of the second finger, then one or the other objective must



Fig. 1. The bifurcated manipulator (not drawn to scale) usedin the
simulations. A POR is defined at the end of each “finger.”

Fig. 2. The manipulation scenario. The two-finger manipulator is initially
contacting the object lightly. At the start of the simulation, the right finger
impedance position reference changes so that the finger willmove in the
direction of the dashed arrow. The left finger impedance remains unchanged
so that it will continue to apply a light inward force on the object. The
dual-priority control law must move the right finger withoutchanging the
impedance of the left finger.

be “sacrificed.” In this application scenario, it is desirable
to sacrifice those aspects of the first finger objective so that
regardless of how the finger is commanded to move, the second
finger is assured of maintaining a constant impedance.

The entire manipulator is illustrated in Figure 1. The three
links proximal to the bifurcation will be referred to, in order
proximal to distal, as: the “upper arm”, the “forearm”, and the
“palm.” The two branches will be referred to as the “fingers.”
The lengths, masses, and moments of inertia are given in
Table I. Note that the finger masses and inertias are large
enough to be of the same order as the arm. A POR is defined
at the tip of each of the two fingers.

B. Comparison with a single-priority control law

For reference, the dual-priority control law proposed in this
paper was compared to a single priority control law. Compared
with the dual-priority control law, this is a simpler alternative

and should only be discarded when significant advantages are
offered by a dual-priority law.

1) Single-priority control law: The single-priority law is:

u = JT f∗ +MJ+J̇ q̇ +MNBj q̇. (29)

This achieves a desired impedance,

Λsẍs + f∗
s = fs,

where ẍT
s = (p̈1, ω̇1, p̈2) is a generalized acceleration,Λs is

the passive manipulator inertia projected into the correspond-
ing operational space coordinates, andfs is the generalized
force. Both desired impedances are combined into a single
impedance objective:
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where K
p
1 = diag(45) (Newtons per Meter) andBp

1 =
diag(25) (Newton-seconds per Meter) are the desired transla-
tional stiffness and damping of POR 1,Kr

1 = diag(10) and
Br

1 = diag(5) are the desired angular stiffness and damping
of POR 1, andKp

2 = diag(20) andB
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2 = diag(25) are the

desired translational stiffness and damping of POR 2. The
corresponding Jacobian is
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where J
p
1 and Jr

1 describe the Cartesian translational and
angular velocities (respectively) at POR 1 andJp

2 is the
translational Jacobian for POR 2.

2) Dual-priority control law: The single-priority control
law above was compared to the dual priority control law
of Equation 18. The first priority objective was to realize a
translational and angular desired impedance at POR 1,

Λ1ẍ1 + f∗
1 = f1.

ẍ1 = (p̈1, ω̇1) is the acceleration inSE(3). Λ1 is the corre-
sponding passive operational space inertia,f∗

1 is the desired
damping and stiffness,
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x̃1, (30)

and f1 is the corresponding externally applied load. The
second priority objective was to realize just a translational
impedance at POR 2 – not an angular impedance,

Λ2p̈2 + f∗
2 = f2,

whereΛ2 is the passive manipulator inertia projected into the
translational Euclidean coordinates for POR 2, andf2 is the
externally applied force at POR 2. The desired POR 2 damping
and stiffness is:

f∗
2 = B

p
2 ṗ2 +K

p
2 p̃2. (31)

Figure 3 compares the performance of the two control laws
when the first-priority POR reference pose is the same as



Link Length Mass Ixx Iyy Izz

upper arm 0.38m 6.8Kg 0.082 0.082 0.0082
forearm 0.35m 5.5Kg 0.056 0.056 0.0056

palm 0.1m 2Kg 0.01 0.01 0.001
finger link 0.1m 1Kg 0.005 0.005 0.0005

TABLE I

DYNAMIC PARAMETERS OF SIMULATED ARM. Izz IS THE MOMENT OF INERTIA ABOUT THE LINK AXIS. Ixx AND Iyy ARE THE REMAINING TWO

ORTHOGONAL MOMENTS OF INERTIA. ALL FINGER LINKS HAVE THE SAME DYNAMIC PARAMETERS.
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Fig. 3. Comparison between the dual-priority control law proposed in this paper (the black line) and a single-priority controller (the blue line).

in the starting configuration,p∗2 = p2(0) and r∗2 = r2(0),
the second-priority POR reference position is changed,p∗2 =
(0.96, 1.016, 0)T , and no external forces are applied to the
manipulator. First, notice that the dual-priority controllaw
(the black line in Figure 3) keeps POR 1 in approximately
the same position and orientation during the interaction while
the single-priority control law (the blue line) allows POR 1to
move. This is not suprising because the single priority control
law does not enforce the prioritization. Second, notice that
Figure 3(c) shows that the single-priority control law gets
closer to achieving the POR 2 objective than the dual-priority
controller. Since the single-priority controller allowedPOR
1 to move and rotate from the reference, thex-coordinate
of the POR 2 position (the glue line in Figure 3(c)) moves
toward the 0.96 reference (although it does not reach the
reference because it is balancing the POR 1 objective as
well). Nevertheless, since the POR 2y-dimension (the top
line in Figure 3(c)) is unconstrained with respect to the
POR 1 objectives, both the single- and dual-priority control
laws realize they-dimension objective with approximately the
same performance. In contrast, the dual-priority control law
maintains constant POR 1 position and orientation. POR 2
position error is minimized in the directions that do not change
POR 1 orientation and ignored in the directions that do.

VI. COMPARISON WITH SENTIS-KHATIB

Section III-E demonstrated that the proposed dual-priority
control law has certain theoretical advantages relative tothe
Sentis-Khatib control law. These differences have an important
effect on the overall performance of the control law. The two
control laws are compared under the same conditions used
above to compare with the single priority law. The simulation

compared the Sentis-Khatib control law in Equation 22 with
the proposed dual-priority control law in Equation 18. Both
control laws are parameterized with the desired first- and
second-priority impedances given in Equations 30 and 31.

Figure 4(a) and (b) demonstrates that both dual-priority
control laws realize the first-priority impedance almost equally
well (the proposed control law does a bit worse in keeping the
orientation constraint.) This is expected since it is possible to
substitute either control law into the manipulator dynamics
(Equation 1), solve for the POR 1 accelerations, and arrive
at Equation 2. However Figure 4(c) illustrates the differences
regarding POR 2. The control law of this paper (the black
line) converges to the position nearest (Euclidian norm) the
POR 2 reference position while the Sentis-Khatib control law
converges elsewhere (the blue line). This result demonstrates
that the theoretically suboptimal performance demonstrated in
Equation 24 can have a significant practical impact.

VII. C ONCLUSION

Multi-priority Cartesian impedance control is important
because it enables the robot programmer to control a complex
manipulator in terms of desired Cartesian impedances at
multiple PORs. This is the natural extension of single end-
effector control to branching manipulators. The prioritization
is necessary to resolve conflicts between different objectives.
Although multi-priority motion control can achieve prioritized
motions that are similar to what can be achieved with multi-
priority impedance control, these motions are not robust and
predictable when the possibility of contact exists. Manipula-
tion and assembly applications, in particular, require exactly
the type of behavior that this paper has considered: motion
of a second-priority POR while the first-priority POR acts
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Fig. 4. Comparison between the dual-priority controller proposed in this paper (the black line) and the Sentis Khatib dual-priority controller (the blue line).
(a) and (b) show similar performance for both control laws with respect to the first priority impedance objective while (c) shows that the proposed controller
has better performance with respect to the second priority impedance.

with a constant desired force or impedance. This paper makes
two main contributions. First, we propose a locally optimal
dual-priority impedance control law for the general case where
end-effector load measurements may or may not be available.
Second, we analyze the performance of the control law in
theory and relative to the existing multi-priority impedance
control literature.
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